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MEASUREMENT AND  STATISTICAL TREATMENT OF EMPERICAL DATA 
 
 
PRECISION, ACCURACY, and ERROR. 
 
 Precision refers to the variability among replicate measurements of the 
same quantity.  Consider three determinations of the percentage energy loss in a 
conversion process, determined by one scientist, to be 2.63, 2.62, and 2.62 per 
cent, and three results obtained for the same energy loss, by a second scientist, to 
be 2.60, 2.75, and 2.81 per cent.  The results of the first scientist exhibit much less 
variation among themselves than do those of the second, so the precision of the 
first set of results is better than that of the second. 
 
 Accuracy refers to the difference between a quantities' measured value and 
the true value of the quantity being measured.  Strictly speaking, the true values 
are never known except in counting discrete objects ("there are exactly 22 students 
in this class") and in defined quantities.  All other types of measurements, including 
mass, length, time, and charge, are actually comparisons to standards, and these 
comparisons must consist of measurements.  So the term accuracy refers to the 
difference between a measured value and the value which is accepted as the true 
or correct value of the quantity measured. 
 
 The distinction between precision and accuracy may be likened to the result 
of shooting a series of arrows at an archery target -- precision refers to how close 
together the several arrows hit and accuracy refers to how close to the bull's-eye 
each lands.  It is possible for a replicate series of measurements or determinations 
to be very precise and yet highly inaccurate.  It is, however, quite meaningless to 
consider the accuracy of a series of values unless the precision is reasonably 
good.  The scientist desires to achieve acceptable precision and accuracy in all of 
his work and to assess how accurate and precise his work and methods are.  
 
 Error.  The scientist is continually interested in the cause and the magnitude 
of errors in his measurements.  He examines the quantitative data he obtains not 
with the question as to whether error is present but rather with the question as to 
how much error and uncertainty exist.  He recognizes that error is always present 
and that he will not completely eliminate error even though he does continually 
strive to recognize, to minimize, and to evaluate error in his measurements.  Error 
may be arbitrarily divided into two categories, systematic and random error. 
 
 Systematic error are those one-sided errors which can be traced to a 
specific source, either in the strategic scheme of the experiment or in the apparatus 
used to perform it.  Such errors can often be minimized by a modified plan of 
attack.  Even when the errors cannot be completely suppressed in this way, an 
understanding of their origins often makes it possible to deduce a correction factor 
that can be applied to the final result, or at least to estimate the probable residual 
error in that result. 
 
 When one or more large errors appear to be present, it is frequently possible 
to discover their origins by a series of carefully controlled experiments in which the 
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experimental conditions and quantities are varied widely in a systematic way.  The 
resultant error must follow one of three courses:  (1) the error may remain relatively 
constant and independent of the experimental conditions, (2) the magnitude of the 
error may vary systematically with one or more of the experimental conditions, or 
(3) the error may persist as a random error. 
 
 If the error in a measurement proves to be constant in magnitude, such 
possibilities as instrument calibration must be considered.  If a systematic variation 
of the error is evident, the parameter linked to his variation frequently indicates the 
cause.  When an apparently random error is encountered it may be a systematic 
error linked to some experimental condition not yet investigated or controlled.  For 
example, an apparently random error could ultimately prove to be associated with 
variations in atmospheric humidity, perhaps indicating that a chemical or material is 
absorbing water during the experiment. 
 
 Systematic errors tend to make the observed or calculated values 
consistently too high or too low.  This means that systematic errors can make 
results highly inaccurate without affecting the precision of replicate results.  Good 
precision does not necessarily mean good accuracy.  Varying at least some 
experimental factors in replicate experiments can minimize the danger of retaining 
one-sided errors without recognizing their presence.  In critical analyses, duplicate 
sets of samples should be analyzed by entirely different methods since it is unlikely 
that the same systematic errors would appear to the same extent in entirely 
different analytical procedures. 
 
 Random error.  The cause of a random error may or may not be known.  
Some personal judgment is required in all measurements, such as in reading 
instrument dials or meters, noting just when a container is filled to a predetermined 
calibration mark, and so forth; and random inaccuracies are bound to occur.  Some 
random errors arise within the method itself, such as impurity of a supposedly pure 
material, variations with stirring and with speed of mixing reagents, and so on.  
Random variations in room temperature and other environmental factors may 
introduce random error into analytical results. 
 
 The scientist can and should minimize random errors insofar as is feasible 
by careful work, by choice of schemes of analysis which have been or can be 
proven to be valid, and by keeping environmental factors as constant as possible.  
However, residual random errors will remain even when all reasonable efforts are 
made to ensure careful and accurate work. 
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 A statistical probability analysis of random error provides two criteria for the 
recognition of random errors:  (1) small deviations from the correct value are much 
more frequent than large ones; (2) positive and negative deviations of equal 
magnitude occur with about the same frequency.  These two criteria are expressed 
graphically in the curve shown in Figure I below, which shows a normal distribution 
of the errors in an infinitely large number of experimental measurements, all of 
which are ideally perfect except for random errors.  The characteristic distribution 
of errors, particularly as expressed in criterion, 2, suggests that, if a large number 
of determinations is made of the same quantity and if the measurement is affected 
only by random errors, the average of all the values should indicate directly the 
correct value.  Even when relatively few measurements are made, the average 
provides a more reliable estimate of the correct value than does any one of the 
individual determinations, assuming that only random errors are present.  The 
quantitative treatment of averages and of measures of precision and accuracy will 
be discussed in the following section with further reference to the normal 
distribution curve. 
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Figure I.  Normal distribution curve showing frequency of measurement as a function of 
measured value.  This curve has a mean of 5, and a standard deviation of 1.  Note the 
measured value of maximum frequency (5) and the distance from that value to either 
inflection points (+1 or -1). 
 

SIGNIFICANT FIGURES, MEASUREMENT,  AND UNCERTAINTY. 
 
 Significant figures are a way of indicating uncertainty in a measurement.  
Significant figures are the digits necessary to express the results of a measurement 
to the precision with which it is made.   The number of significant figures is a 
count of the number of successively smaller powers of ten on the instrument 
(finer graduations), that the scientist was able to take advantage of in the 
measurement.  When using a scale, the usual practice is to estimate between the 
smallest marks on the scale to the next tenth smaller.  This estimate is also 
considered a significant figure although somewhat uncertain.  It is usually assumed 
that a scientist can estimate between the marks to an accuracy of ± 1/10 of the 
distance if the scale is reasonably constructed and the scientist is familiar with 
reading a scale. 
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               Consider determining the mass of an object, first on a rough balance to 
the nearest tenth of a gram, and then on an analytical balance to the nearest ten 
thousandths of a gram.  The results of the two being 11.2 g and 11.2169 g, 
respectively.  Three digits are used in expressing the result of the first 
measurement and six for the second.  Any fewer digits could not express the result 
of the measurements to the precision with which they were made, and no more 
digits could justifiably be used for either value; therefore, the first mass is 
expressed in three significant figures and the second in six. 
 
 Consider next the measurement of an extremely small number, such as the 
number of moles of hydrogen ion in 1 liter of pure water at room temperature.  This 
quantity can be measured, and the result could be written as 0.0000001 mole.  
Eight digits, including the zeros, have been used.  However, the same number 
could be written as 1. x 10-7 mole, in which case only one digit has been used 
exclusive of the exponential factor.  Thus, the result of the measurement has only 
one significant figure no matter which way it is written, because only one digit is 
necessary to express the results of the measurement to the precision with which it 
was made.  The zeros to the left of the 1 in 0.0000001 and the exponential factor of  
x 10-7 are used merely to locate the decimal point and do not fit into the definition of 
significant figures.  Zero's leading the first non-zero digit are not significant, 
regardless of the position of the decimal point.  A similar consideration is 
encountered in measurements of very large numbers.  For example, the number of 
molecules in a mole of any compound can be written as 6.02 x 1023, and this 
number contains three significant figures.  The exponential factor again serves only 
to locate the decimal point. 
 
 It is important for each person making measurements to express the results 
of the measurements with the proper number of significant figures.  Another 
scientist or engineer who reads and in any way uses or interprets the results of 
those measurements can usually tell (and will assume) at a glance how many 
significant figures are intended.   Spreadsheets, such as EXCEL, do not 
understand significant figures!  This job is left to the scientist. 
 

 There is a possibility a scientist could be confused about counting the 
number of significant figures when reading large numbers.  For example, a 
recorded volume of 2000 ml might involve only one significant figure, meaning that 
the measured value was closer to 2000 than to 1000 or 3000.  Alternatively, it 
could signify the measured quantity to be closer to 2000 than to 2001 or 1999, in 
which case four significant figures are indicated.  Likewise, the number 2000 might 
intend only two or three figures to be significant.  This possible uncertainty can be 
avoided very simply if the one who makes the measurements in the first place 
writes it in a exponential form  ( 2 x 103, 2.0 x 103, 2.00 x 103 ) clearly showing 
whether he intends one, two, three, or four figures, respectively, to be significant.  It 
is advisable to express the results of measurements in this exponential form 
whenever there can possibly be any confusion as to whether zeros to the left of the 
decimal point are significant or not.  All measurements should include a decimal 
point, while a count requires no decimal point. 
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 Absolute Uncertainty and Relative Uncertainty.  Uncertainty in measured 
values may be considered from either of two distinct viewpoints.  Absolute 
uncertainty is the uncertainty expressed directly in units of the measurement.  A 
mass expressed as 10.2 g is presumably valid within a tenth of a gram, so the 
absolute uncertainty is one tenth of a gram.  Similarly, a volume measurement 
written as 46.26 ml indicates an absolute uncertainty of one hundredth of a 
milliliter.  Absolute uncertainties are expressed in the same units as the quantity 
being measured -- grams, liters, and so forth. 
 
 Relative uncertainty is the uncertainty expressed in terms of the magnitude 
of the quantity being measured.  The mass 10.2 g is valid within one tenth of a 
gram and the entire quantity represents 102 tenths of a gram, so the relative 
uncertainty is about one part in 100 parts.  The volume written, as 46.16 ml is 
correct to within one hundredth of a milliliter in 4626 hundredths of a milliliter, so 
the relative uncertainty is one part in 4626 parts, or about 0.2 part in a thousand.  It 
is customary, but by no means necessary to express relative uncertainties as parts 
per hundred (per cent), as parts per thousand, or as parts per million.  Relative 
uncertainties do not have dimensions of mass, volume, or the like because a 
relative uncertainty is simply a ratio between two numbers, both of which are in the 
same dimensional units. 
 
            To distinguish further between absolute and relative uncertainty, consider 
the results of mass determinations of two different objects on an analytical balance 
to be 0.0021 g and 0.5432 g.  As written, the absolute uncertainty of each number 
is one ten-thousandth of a gram, yet the relative uncertainties differ widely -- one 
part in 20 for the first mass and one part in approximately 5000 for the other value. 
 
Significant Figures in Mathematical Operations. 
  
          Very seldom is the result of an analytical determination based solely upon 
one measured value.  For example, even the mass determination of a single 
sample normally requires two mass measurements, one before and one after 
removing a portion of the sample from a “weighing” bottle.  The result of the second 
mass determination must be subtracted from the first to get the sample mass.  
Frequently, one measured value must be multiplied or divided by another.  The 
scientist is concerned with significant figures not only in dealing with results of 
single measurements but also in conjunction with numbers computed 
mathematically from two or more measured quantities.  The arithmetical operations 
of addition and subtraction may be considered together, as may multiplication and 
division. 
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              Addition and Subtraction Rule:  Decimal Places, not significant figures, 
control the precision of the results of the computation.  The answer may only 
contain as many decimal places as is equal to the operand with the fewest number 
of decimal places. 
 
       The concept is illustrated in the following example: 
 

Mass of bottle plus sample  11.2169 g 
Mass of bottle empty        -  10.8114 g 
Mass of sample                       .4055 g  

 
Each of the quantities measured directly contains six significant figures and four 
decimal places, but the mass of the sample has only four significant figures and 
four decimal places. 
 
 

Now, assume that one mass determination was made less precisely, so that 
the data are as follows: 
 
 Mass of bottle plus sample              11.2169 g 
 Mass  of bottle alone         -    10.81    g 
             Mass of sample                                 .41g 
 
The correct mass of the sample is not 0.4069 g but rather 0.41 g.  With the decimal 
points aligned vertically, the computed result has no more decimal places than the 
number with the least number of decimal places.  The mass of the sample has two 
decimal places, and two significant figures.  Note that, with absolute uncertainties 
of 0.0001 and 0.01 g for the two numbers to be subtracted, the absolute 
uncertainty of the difference is 0.01 g.  
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          Multiplication and Division Rule:  Significant figures, not decimal places, 
control the precision of the results of the computation.  The answer may only 
contain as many significant figures as is equal to the operand with the fewest 
number of significant figures. 
 
             

The concept of significant figures in the operations of multiplying and 
dividing must be based upon relative uncertainties.  A product or quotient should 
be expressed with sufficient significant figures to indicate a relative uncertainty 
comparable to that of the factor with the greatest relative uncertainty.  Consider the 
problem : 
 

   9.678234 n  
x   0.12 m  
    1.2 nm.   

 
Expressing this result as, for example, 1.1613 nm would be totally unjustifiable in 
view of the fact that the relative uncertainty of the second factor is one part in 12. 
 
 The rule that the relative error of a product or quotient is dependent upon 
the relative error of the least accurately known factor suggests the important 
generalization that, in measuring quantities which must be multiplied or divided to 
get a final result, it is advantageous to make all the measurements with 
approximately the same relative error.  It is a waste of time to measure one 
quantity to one part in a hundred thousand if it must subsequently be multiplied by 
a number which cannot be measured any better than to within one part in a 
hundred.  Similarly, it is advisable to measure quantities, which are to be combined 
by addition or subtraction to about the same absolute uncertainty.  It would be 
foolish to take pains to measure one mass to a tenth of a milligram if it is to be 
added to a mass, which for some reason cannot be, measured any closer than to, 
say, 10 mg. 
 

Again, it should be pointed out that computer programs and spreadsheets 
similar to EXCEL do not understand significant figures, nor the rules necessary in 
maintaining the correct number of decimal places and significant figures through 
arithmetic computations.  If using a spreadsheet to perform data analysis, it is the 
responsibility of the scientist, using the rounding functions, to preserve the 
appropriate level of uncertainty. 



                                                                                                                                                          8

  
STATISTICAL TREATMENT  
 
 Every scientist must develop a working familiarity with a few fundamental 
statistical concepts.  In order to recognize errors and to minimize their effects upon 
the final result, the scientist must run each determination more than once, usually 
in triplicate or quadruplicate.  Then he must combine the results of these replicate 
experiments to yield his answer for the determination.  Statistical methods are 
employed in combining and in interpreting these replicate measurements. 
 
 Average.  The average is defined as a measure of central tendency of an 
event.  There are several methods of expressing the central tendency. Mean, 
median, and mode all estimate the central tendency of the data and can be called 
the average.  Given an infinitely large normal distribution, the mean, median and 
mode would yield the same value, the true value.  However, for a non infinite 
sample size, in the range of about 4 to 500 samples, one method of estimating the 
average is the simplest and at the same time about the best from a theoretical 
standpoint.  This is the arithmetic mean, commonly called by the more general term 
average.  It is obtained by adding the replicate results and dividing by the number 
of those results.           

         ∑
=

=
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EXCEL provides the arithmetic mean with the statistical function AVERAGE(). 
 

Consider the following four results of the determination of the half life of a 
radio active sample: 
 
 22.64 sec 
 22.54 sec 
 22.61 sec 
         +22.53 sec 
           90.32 sec                   
 
         The arithmetic mean or average, is  90.32 sec / 4 = 22.58 sec.  Note the rules 
of significant figures have been applied to this computation. 
            
   Deviation.  The average, as the measure of central tendency, is very 
important, but it does not in itself indicate all the information, which can be derived 
from a series of numerical results.  The extent of the variations from this average is 
also of considerable interest.  The variation of a single value from the average may 
be expressed simply as the difference between the two, and this difference is 
designated the deviation.  Thus, if X1, X2, and X3 represent the several numerical 
values and Xmean represents the arithmetic mean calculated as described in the 
preceding section, the several deviations (d1, d2, and d3) are: 
 
  d1 = X1 - Xmean 
  d2 = X2 - Xmean 
  d3 = X3 - Xmean 
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It is conventional to subtract the arithmetic mean from the specific value, as 
indicated, and not vice versa.  Thus, the deviation is positive if the one 
experimental value is greater than the arithmetic mean and negative if the 
arithmetic mean is greater.  The algebraic sum of all the deviations in a set must 
equal zero, at least within the close limits set by rounding off numbers - a 
consequence of the definition of the arithmetic mean.  The individual deviations 
may be expressed either in absolute units or in relative units.  For example, the 
deviation of the mass 11. g from the mass 10. g is one in absolute units of grams, 
and it is one part in 10 relative units.  The latter may also be expressed as 10 per 
cent or a 100 parts per thousand. 
 
 Standard deviation.  The scientist is interested not just in averages and 
individual deviation values.  He also needs a single number whereby he can 
represent the overall deviation within a series of replicate results.  The standard 
deviation is a measure of the spread of the Normal Distribution curve as seen 
previously in figure 1.  Given an infinite series of replicate results (as described by  
the normal distribution curve), the standard deviation would be the distance from 
the mean value to either inflection point value.  Based on probability theory, it can 
be shown that 68% of these replicate results will lie within the bracket: 

(Xmean - standard deviation)  to  (Xmean + standard deviation). 
 
            The estimate of the standard deviation of a sample, s, is computed as 
follows: 
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EXCEL provides the standard deviation of a sample with the statistical function: STDEV(). 
 

Consider the following time data: 
 

t (sec) 
 
22.64 
22.54 
22.61 
22.53  
90.32 

 
tmean = 90.32/4  =22.58 sec 
 
s = 0.05 sec.   
Note again that the rules governing significant figures were employed in this 
calculation. 
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 Confidence Limits.  In order for us to recognize more fully the true 
significance of the arithmetic mean and the standard deviation, we must refer again 
to the curve of Figure 1.  This curve, which may be derived mathematically, 
represents the normal distribution of the errors or deviations in an infinitely large 
sample size, which is ideally perfect except for random errors.  It has already been 
pointed out that small deviations are much more frequent than large ones.  This 
latter statement may be made quantitative with the use of the standard deviation.  
The mathematical treatment from which the normal distribution curve is derived 
reveals, for example, that 68 per cent of the individual deviations are less than the 
standard deviation, that 95 per cent are less than twice the standard deviation, and 
that 99 per cent are less than 2.5 times the standard deviation.  In other words, 68 
per cent of the X values fall within the range of Xmean ± s, 95 per cent within the 
range Xmean ± 2s, and 99 per cent within the range Xmean ± 2.5s. 
 
 Data, which can be interpreted strictly in terms of the normal distribution 
curve or on its mathematical origins, do not generally arise in most analytical 
situations.  There are two reasons for this fact: the derivation specifies random 
errors only, whereas many analytical data are influenced by one-sided, systematic 
errors as well; the derivation specifies a large sample size (actually an infinite 
number) whereas only relatively small sample sizes are feasible in practical 
situations.  Because of the first reason, one-sided, systematic errors must be 
eliminated before the concept of confidence limits (to be described shortly) can 
become applicable.  As a consequence of the second reason, the scientist can 
never know with absolute certainty whether his arithmetic mean is the absolutely 
correct value unless he does run an extremely large number of determinations.  
 

 Even with a few determinations, however, he can specify a range of values 
centered upon his arithmetic mean and then state that there is a 50-50 chance, 95 
chances out of 100, 99 chances out of 100, or any other desired probability that the 
true value does lie within that range.  That is, he can know and specify the 
probability that the true answer lies within a given range, and he can indicate that 
range using the arithmetic mean and the standard deviation.  That range is 
designated as the confidence limit, and the likelihood that the true value lies within 
that range is designated the probability.  The probability is conveniently expressed 
in percentage units. 

When a sample size is less than infinite, the normal distribution curve is not 
used.  The appropriate distribution curve is the Students’ – t  distribution.  Rather 
than attempting to explain the use of the t-distribution, Table I has been prepared 
so the student may select the appropriate “fudge factor” for which to multiply his 
standard deviation in order to adjust it for a sample size of “n” at a selected percent 
probability.  The sample size is represented by n, and f50, f95, and f99 are the factors 
by which the standard deviation of an individual result must be multiplied to yield 
the confidence limits for 50, 95, and 99 per cent probability, respectively, in the 
form   Xmean ± f s.  Thus, the scientist may conclude that the true value lies within 
the range Xmean ± f50 s and he has a 50-50 change of being correct, or he may 
state the true value lies within the range Xmean ± f95s and be 95 per cent certain of 
being correct. 
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                     TABLE I.  FACTORS FOR CALCULATING CONFIDENCE LIMITS  

n f50 f95         f99 

2 0.7071 8.9846 45.0115 
3 0.4714 2.4841 5.7302 
4 0.3824 1.5912 2.9204 
5 0.3312 1.2417 2.0590 
6 0.2967 1.0494 1.6461 
7 0.2712 0.9248 1.4013 
8 0.2514 0.8360 1.2373 
9 0.2355 0.7687 1.1185 
10 0.2222 0.7154 1.0277 
11 0.2110 0.6718 0.9556 
12 0.2013 0.6354 0.8966 
13 0.1929 0.6043 0.8472 
14 0.1854 0.5774 0.8051 
15 0.1788 0.5538 0.7686 
16 0.1728 0.5329 0.7367 
17 0.1674 0.5142 0.7084 
18 0.1624 0.4973 0.6831 
19 0.1579 0.4820 0.6604 
20 0.1538 0.4680 0.6397 

 
       { f factors above computed from 2 tail t distribution:   f = t / (n)1/2  }  
  

Note that the "f" values in Table I , 95% probability, may be computed using EXCEL as follows:  
 

f95 = TINV(1-.95,N-1)/SQRT(N) 
    
       Given n individual X values for calculating the average, Xmean, the true value 
may be expected to lie within the range Xmean ± fα s with a % probability as 
indicated by the f subscript,  α. 
            The use of Table I may be illustrated by the following example.  
Four results of a coefficient of friction determination yielded an arithmetic mean 
(Xmean) of .231 with a standard deviation (s) of 0.050 .  From Table I, for n = 4, f50 
is 0.3824; so there is a 50-50 likelihood that the true value lies within the range 
.231 ± (0.3824 x 0.050), or .231 ± 0.019 .  Similarly, there is a 95 per cent 
probability that the true value lies within the range .231 ± .080, and a 99 per cent 
probability that it is .231 ± .15 .  It is clear from this example, and from the table, 
that the limits must be widened as the required probability of being correct is 
increased.  It is also evident from the table that the importance of each additional 
trial beyond three or four diminishes as the total number n increases.  These 
factors are in keeping with common sense - statistical concepts should be 
considered as a means of putting common sense on a quantitative foundation, but 
not as a substitute for common sense itself. 
 The probability value used in expressing the results of an analytical 
determination is quite arbitrary.  In any case, the probability chosen should be 
stated or otherwise indicated.  Probabilities of 95 and 99 per cent are most 
commonly employed in analytical work, whereas a 50 per cent probability is also 
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useful in student work.  Therefore, 50, 95, and 99 per cent data are included in 
Table I, although other probabilities could be used and occasionally are.  
 
Rejection of an Observation.    
 

Every scientist is occasionally confronted with a series of results of replicate 
determinations, one of which appears to be far out of line with the others.  Even 
experienced scientists encounter the same situation.  Consider the series of 
results: 
 
  22.64 sec. 
  22.54 sec. 
  22.22 sec. 
  22.69 sec. 
 
The third value appears to be out of line.  If this third determination were subject to 
an obvious large one-sided error the result could immediately be rejected prior to 
computing the arithmetic mean and confidence limits.  However, in a small series 
of data such as this, all four values could be valid for ascertaining the arithmetic 
mean.  The beginning student is perhaps too greatly inclined to discard a datum 
which does not seem to agree with the body of his measurements, so it is apparent 
that some standard criterion for such rejection is necessary. 
 

Any value may be rejected if a particular reason for its inaccuracy is known.  
If it is known that part of a material was spilled or that a container leaked, that 
result may be discarded at once.  This is systematic error.  Other times, the 
scientist may suspect that a systematic error may have arisen in one sample but he 
may not be certain.  If such is the case, he should include that sample and then 
discard the result if it appears particularly erroneous in the proper direction.  If no 
experimental reason for rejection is known but a value still appears out of line, 
some statistical test must be employed before deciding whether to reject an 
observation.  One such test developed by Dean and Dixon is explored here.  
 
       Dean and Dixon's rejection test is based upon the differences between the 
highest and lowest values as calculated both with and without the suspicious value.  
Let R1 be the difference between the highest and lowest values (Range) with all 
values included, and let R2 be the difference between the highest and lowest 
values excluding the suspicious one.  If the ratio R1/R2 exceeds the critical 
value listed for the appropriate n number in Table II, the suspected 
observation should be rejected; otherwise, it should be retained.  For each n 
value, there are two critical R1/R2 ratios listed in Table II: one for the 95 per cent 
probability level and one for the 99 per cent probability level.  When the 95 per cent 
column is used, the chance of an extreme value being rejected when it should have 
been retained is 5 per cent, whereas there is only a 1 per cent chance that a value 
rejected on the basis of the 99 per cent column should really have been retained.  
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TABLE II.  FACTORS FOR RETENTION OF REJECTION OF EXTREME VALUES 
                                           Critical Values of R1/R2 
 
N Ratio at 95 % probability Ratio at 99 % probability 
3 16.9 83.3 
4 4.3 9.0 
5 2.8 4.6 
6 2.3 3.3 
8 1.9 2.4 
10 1.7 2.1 
        {R.B. Dean and W.J. Dixon: Simplified statistics for small numbers of observations.  Anal. Chem. 23,636 (1951)}  
 
 Consider again these four values: 

22.64 sec 
22.54 sec 
22.22 sec 
22.69 sec  
 

 R1 is (22.69 - 22.22) or 0.47 
 R2 is (22.69 - 22.54) or 0.15 
 The ratio R1/R2 is 0.47/0.15 or 3.1 
 The computed ratio (3.1) is less than the critical values from Table II (4.3 @95% 
and 9.0 @99%, for n=4), so the value should be retained. 
   
        Consider next these four values: 22.64, 22.69, 22.65, and 22.22.  Here, R1 is 
0.47 and R2 is 0.05 excluding the 22.22 value. 
The computed R1/R2 is 9.4, which is greater than the critical value from Table II at 
99% , so the 22.22 value is rejected.  
 
 It is suggested that the 99 per cent probability column of Table II be 
employed in student work in deciding whether to reject an observation, unless your 
professor instructs you differently.  In any case, you should recognize, even 
quantitatively, what the residual chances are that a rejected value should have 
been retained. 
 
 If more than one value is doubtful, this test can be repeated after the most 
extreme value has been rejected.  This is not ordinarily recommended, however.  If 
two values were doubtful in a series of only four or so, it would be much better to 
repeat the whole experiment to obtain more values.  It should be noted that the 
effect upon the arithmetic mean of one or even two discordant values is relatively 
less significant when there are many values than when there are only a few. 
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 Comparing Averages.  
 

Consider the example of some determinations of the density of nitrogen, 
which were performed in the laboratory of Lord Rayleigh in 1894.  Batches of 
nitrogen were prepared by various means from the chemical compounds NO, N2O, 
and NH4NO2 and also from dry, carbon dioxide-free air by several methods of 
removing oxygen.  Measurements of the mass of nitrogen required to fill a certain 
flask under specified conditions revealed for that 10 batches of "chemical nitrogen" 
an arithmetic mean of 2.29971 g, and for nine batches of "atmospheric nitrogen" an 
arithmetic mean of 2.31022 g.  The overall standard deviation within each group 
can be considered to be about 0.00030.  A question arose:  “Was there a 
significant difference between the two averages?”  That is, was the density of the 
"chemical nitrogen" the same as that of the "atmospheric nitrogen" or, more 
basically, was nitrogen from both sources the same? 
 
 We can answer this question on the basis of the t-test for comparing 
averages.  This test will be presented empirically here along with recognition of its 
statistical validity.  The quantity t is defined as 
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in which X1mean and X2mean are the two averages, n1 and n2 are the number of 
individual values averaged to obtain X1mean and X2mean respectively, and Sp is 
the common (or pooled)  standard deviation.   
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Critical t values at 95 and 99 per cent probability levels are listed in Table III.  The 
phrase degrees of freedom is a common statistical term which is simply n1 + n2 - 2 
in this application.  If an observed or calculated t exceeds the indicated critical t 
value, the chances are 95 out of 100 or 99 out of 100 (depending upon which 
critical t value of Table III is used) that the averages are significantly different. 
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TABLE III.  CRITICAL t VALUES FOR COMPARISON OF AVERAGES 
Critical t Value at 95% and 99 % probability level (2 tail)  

 
D.F. 95% 99% 

1 12.706 63.656 
2 4.303 9.925 
3 3.182 5.841 
4 2.776 4.604 
5 2.571 4.032 
6 2.447 3.707 
7 2.365 3.499 
8 2.306 3.355 
9 2.262 3.250 
10 2.228 3.169 
11 2.201 3.106 
12 2.179 3.055 
13 2.160 3.012 
14 2.145 2.977 
15 2.131 2.947 
16 2.120 2.921 
17 2.110 2.898 
18 2.101 2.878 
19 2.093 2.861 
20 2.086 2.845 

      {D.F., degrees of freedom, is n1 + n2 - 2.} 
 

The above table values can be computed for any probability and degrees of freedom using 
EXCEL.  The EXCEL function:  TINV(1.0-.95,10) , will yield 2.228, the "t" value for 10 
degrees of freedom at 95% probability. 

 
The t value for the nitrogen data may be calculated as follows: 
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  t = (2.31022 - 2.29971)*[10*9/(10+9)]1/2 

                                               .00030 
 
  t = 76 
 
 From Table III, tcomputed > tcritical , thus the averages are different. 
 

76 > t(99%,df=17) =2.898   
 

So the "chemical nitrogen" and the "atmospheric nitrogen" are almost 
certainly different.  Lord Rayleigh, employing a somewhat different but comparable 
statistical test, recognized this difference; and this fact led directly to the discovery 
shortly thereafter of the so-called inert gases in the atmosphere! 
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 Consider four gravimetric determinations of chloride in a particular sample 
yielding the arithmetic mean, 20.44% Cl, and four volumetric determinations of 
chloride in the same sample yielding the arithmetic mean 20.54 per cent Cl, both 
with standard deviations of about 0.08.  Are the results of the gavimetric and 
volumetric methods significantly different?  
 
  
 The t test provides the answer. 
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 t = (20.54-20.44)*[4*4/(4+4)]1/2 

                         .08 
 t = 1.77 
 
       
 

  
 
 
The critical t values for D.F. = 6 (n1 + n2 - 2) are 2.5 and 3.7 at the two listed 
probability levels, we may not conclude that the two averages are significantly 
different. 
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