Surgical Treatment of Laryngomalacia

Garrett Hauptman MD
Matthew Ryan MD
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
June 15, 2005
Overview

- Laryngomalacia
 - Patient presentation and work-up
 - Medical management
 - Surgical intervention
Differential Diagnosis of Noisy Breathing

TABLE 74.5. DIFFERENTIAL DIAGNOSIS OF COMMON CAUSES OF NOisy BREATHING IN CHILDREN

<table>
<thead>
<tr>
<th>Condition</th>
<th>Congenital</th>
<th>Inflammatory</th>
<th>Neoplastic</th>
<th>Neuromuscular</th>
<th>Traumatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal and nasopharynx</td>
<td>Choanal atresia or stenosis</td>
<td>Nasal polyps</td>
<td>Encephalocele</td>
<td>Dermoid</td>
<td>Foreign body</td>
</tr>
<tr>
<td></td>
<td>Pyriform aperture stenosis</td>
<td>Rhinitis</td>
<td>Dermoid</td>
<td>Gioma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Craniofacial anomalies</td>
<td>Retropharyngeal abscess</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oropharynx/</td>
<td>Glossoptosis/macroglossia</td>
<td>Tonsil hypertrophy</td>
<td>Hypotonia, neurologic disease</td>
<td>Foreign body</td>
<td></td>
</tr>
<tr>
<td>hypopharynx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lingual thyroid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valvular cyst</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Craniofacial anomalies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supraglottic larynx</td>
<td>Laryngomalacia</td>
<td>Epiglottitis (supraglottitis)</td>
<td>Hemangioma</td>
<td>Lymphangioma</td>
<td>Foreign body</td>
</tr>
<tr>
<td></td>
<td>Laryngocele/saccular cyst</td>
<td>Angioneurotic edema</td>
<td>Hemangioma</td>
<td>Lymphangioma</td>
<td>Foreign body</td>
</tr>
<tr>
<td>Glottic larynx</td>
<td>Web/ataresia</td>
<td>Laryngitis</td>
<td>Hemangioma</td>
<td>Papilloma</td>
<td>Vocal Cord Paralysis</td>
</tr>
<tr>
<td></td>
<td>Laryngeal cleft</td>
<td>Spasm</td>
<td>Lymphangioma</td>
<td>Papilloma</td>
<td>Hematoma</td>
</tr>
<tr>
<td></td>
<td>Stenosis</td>
<td>Stenosis</td>
<td>Papilloma</td>
<td>Granuloma</td>
<td></td>
</tr>
<tr>
<td>Subglottic larynx</td>
<td>Stenosis</td>
<td>Croup (viral laryngotracheobronchitis)</td>
<td>Hemangioma</td>
<td>Stenosis</td>
<td>Fracture</td>
</tr>
<tr>
<td></td>
<td>Cysts</td>
<td>Stenosis</td>
<td>Papilloma</td>
<td>Stenosis</td>
<td>Foreign body</td>
</tr>
<tr>
<td>Tracheobronchial</td>
<td>Stenosis/web</td>
<td>Membranous (bacterial tracheitis)</td>
<td>Mediastinal tumors</td>
<td>Thymus</td>
<td>Stenosis</td>
</tr>
<tr>
<td></td>
<td>Tracheomalacia</td>
<td>Bronchitis</td>
<td>Tumors</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vascular ring/sling/complete tracheal rings</td>
<td>Asthma (reactive airway disease)</td>
<td>Thyroid</td>
<td></td>
<td>Foreign body-tracheal or esophageal</td>
</tr>
<tr>
<td></td>
<td>Foregut cysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tracheoesophageal fistula</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stridor

- A harsh, high pitched musical sound that results from turbulent airflow through the upper airway
- Etiology may range from mild illness to severe, life-threatening situation
Stridor Etiology

- Congenital
- Inflammation
- Trauma
- Foreign bodies
Stridor Presentation

- Variable age of onset
- Patient typically presents with sudden onset of symptoms
- Acquired stridor (inflammation, trauma, foreign bodies) is more likely than congenital stridor to require airway intervention
Congenital Stridor

- Eighty-five percent of children under 2.5 years presenting with stridor have a congenital etiology
- Often not present at birth
- Typically presents prior to four months of age
Assessing Stridor

- Determination of respiratory phase in which sound is noted
 - Inspiratory
 - Biphasic
 - Expiratory
Inspiratory Stridor

• Result of supraglottic obstruction
• High-pitched
Biphasic Stridor

• Result of extrathoracic tracheal obstruction including
 – Glottis
 – Subglottis

• Intermediate pitch
Expiratory Stridor

• Result of intrathoracic tracheal obstruction

• Associated with retraction of
 – Sternum
 – Costal cartilage
 – Suprasternal tissue
Laryngomalacia

- a condition in which the tissues of the entrance of the larynx collapse into the airway when the patient inspires
- Secondary to continued immaturity of larynx
- Cause remains enigmatic
Laryngomalacia

• Most common cause of stridor in infancy
• Most common congenital laryngeal anomaly
• 2 males: 1 females
Contributing Factors of Laryngomalacia

• Anatomic
 – Shortening of aryepiglottic folds and anterior collapse of cuneiform and corniculate cartilage
 • Prospective case-control by Manning et al in 4/05 created a ratio of aryepiglottic fold length to glottic length
 – Severe laryngomalacia = 0.380
 – Control = 0.535
 – Floppy or tubular epiglottis
Contributing Factors of Laryngomalacia

• **Neurologic**
 - Immature neuromuscular control and movement

• **Inflammatory**
 - Reflux can induce posterior supraglottic edema and secondarily laryngomalacia
Symptoms of Laryngomalacia

- Onset typically days to weeks after birth
 - Most commonly within the first 2 weeks of life
- Inspiratory stridor
 - Low pitch with a fluttering quality
 - secondary to circumferential rimming of the supraglottic airway and aryepiglottic folds
- More prominent when child is
 - Supine
 - Agitated
- Louder quality with more forceable inspiration
- Often associated with general noisy respiration
Diagnosis of Laryngomalacia

• Clinical assessment
 – Suspect laryngomalacia in a neonate with auscultation of inspiratory stridor
 – Confirm suspicion with flexible laryngoscopy
Flexible Laryngoscopy

• Best performed with
 – Unanesthetized child
 – Upright position
 – 1.9mm laryngoscope

• Scope should be passed through both nasal passages

• Evaluate vocal cord mobility
Flexible Laryngoscopy
Findings with Laryngomalacia

• Cyclical collapse of supraglottic larynx with inspiration
• Short aryepiglottic folds
 – Draw the cuneiform and corniculate cartilages forward over the laryngeal inlet resulting in prolapse during inspiration
Laryngomalacia Seen by Flexible Laryngoscopy
Laryngomalacia Classification

- **Type I**: inward collapse of the aryepiglottic folds
Laryngomalacia Classification

• **Type II**: long tubular epiglottis which curls on itself
 - Often occurs with type I laryngomalacia
Laryngomalacia Classification

- **Type III**: anterior, medial collapse of corniculate and cuneiform cartilages
Laryngomalacia Classification

- **Type IV**: posterior inspiratory displacement of the epiglottis against the posterior pharyngeal wall or inferior collapse to the vocal folds
Laryngomalacia Classification

- **Type V**: short aryepiglottic folds
Radiographic Evaluation

- Unnecessary
- Inspiratory plain film with neck extension
 - May show medial and inferiorly displaced arytenoids and epiglottis
- Fluoroscopy
 - May demonstrate collapse of supraglottic structures with inspiration
Medical Management of Laryngomalacia

• Reassuring parents of favorable prognosis
 – Condition is usually self-limiting
• Position adjustments
 – More prominent when supine or agitated
• Consider reflux precautions
• Frequent evaluation by pediatrician to assess:
 – Growth
 – Feeding
 – Breathing
Surgical Management of Laryngomalacia

- Rarely necessary as condition is self-limiting
- Severe symptoms are surgical indications
 - Life-threatening airway obstruction
 - Inability to feed orally
 - Cor pulmonale
 - Failure to thrive
Surgical Management of Laryngomalacia

- Prior to 1980s, tracheotomy was treatment
- Tracheotomy bypassed area of obstruction until supraglottic pathology spontaneously resolves
- Today, this strategy only employed in severely affected infant
Surgical Management of Laryngomalacia

• Supraglottoplasty
 – Addresses area of obstruction directly
 – May be performed with several instruments
 • Microlaryngeal instruments
 • Carbon dioxide laser
 • Microdebrider
 – Unilateral should be considered initially
Surgical Management of Laryngomalacia

- Direct laryngoscopy and bronchoscopy should be considered prior to surgery
 - In 1996, Mancuso et al performed a retrospective study to determine necessity of rigid endoscopy in management of laryngomalacia and associated synchronous airway lesions
 - Synchronous airway lesions (SALs) – 18.9%
 - Clinically significant SALs – 4.7%
 - SALs requiring intervention – 3.9%
Tissue Targeted by Supraglottoplasty
Surgical Management of Laryngomalacia

• Post-operative management
 – Usually left intubated overnight
 – Antibiotics should be given at least 5 days post-operatively
 – Antireflux precautions
 • Medication
 • Positioning
Overview of Literature Review

- History of supraglottoplasty
- Severe laryngomalacia and expected treatment outcomes
- Unilateral versus bilateral
- Surgical techniques
- Failures and complications
History of Supraglottoplasty
History of Supraglottoplasty

• 1922: Dr. Iglauer described endoscopic removal of supraglottic tissue with nasal snare
• 1984: Dr. Lane described removal of corniculate cartilage and redundant arytenoid mucosa
• 1985: Dr. Seid described CO2 laser for treatment of laryngomalacia in 3 patients
Severe Laryngomalacia and Expected Treatment Outcomes
Severe Laryngomalacia Defined

- In 1995, Roger et al published a retrospective study of 115 patients s/p resection of aryepiglottic folds with or without CO2 laser
- Success rate of 98% with 30 month follow-up
- Two children required tracheotomies (failed supraglottoplasty)
- Seven patients required revision surgery
Severe Laryngomalacia Defined

- Established criteria defining severe laryngomalacia: presence of 3 is indication for endoscopic surgery
 - dyspnea at rest and/or severe dyspnea during effort
 - feeding difficulties
 - height and weight growth rate stagnation
 - sleep apnea or obstructive hypoventilation
 - uncontrollable gastroesophageal reflux
 - history of intubation for obstructive dyspnea
 - effort hypoxia (10% higher than the normal values for the same age group)
 - effort hypercapnia (10% higher than the normal values for the same age group)
 - abnormal polysomnography with an increased apnea/obstructive hypoventilation index
Resolution and Intervention for Laryngomalacia

• In 1999, Olney et al performed a retrospective chart review to determine
 – Outcome of infants who do not undergo routine direct laryngoscopy and bronchoscopy
 – Age at which laryngomalacia resolves
 – Outcome of supraglottoplasty as a function of the type of laryngomalacia and the presence of concomitant disease
Alternate Classification of Laryngomalacia
Resolution and Intervention for Laryngomalacia

- Olney Results
 - direct laryngoscopy and bronchoscopy as part of the routine evaluation of laryngomalacia is not warranted and should only be performed when there is clinical and physical evidence of a concomitant airway lesion
 - median time to resolution of isolated laryngomalacia was 36 weeks, and by 72 weeks, 75% of infants were free of stridor
Resolution and Intervention for Laryngomalacia

- Olney results (cont.)
 - Supraglottoplasty was determined to be necessary in approximately 15-20% of affected infants
 - Apneic episodes
 - Failure to thrive
Unilateral Versus Bilateral
Unilateral Supraglottoplasty

• In 1995, Kelly et al evaluated effectiveness of unilateral supraglottoplasty

• Retrospective review of 18 patients with severe laryngomalacia treated with unilateral CO2 laser supraglottoplasty
 – 3 patients required contralateral supraglottoplasty
 – Obstructive symptoms relieved in 94%
 – Patient without obstructive relief had tracheomalacia secondary to prior tracheotomy
Unilateral Versus Bilateral Supraglottoplasty

• In 2001, Reddy et al evaluated the efficacy of unilateral versus bilateral supraglottoplasty

• Retrospective review of 106 patients
 – 59 patients with bilateral supraglottoplasty
 – 47 patients with unilateral supraglottoplasty
Unilateral Versus Bilateral Supraglottoplasty

- **Reddy Results**
 - 96% with resolution of clinically significant laryngomalacia
 - 15% of unilateral supraglottoplasty patients required contralateral supraglottoplasty
 - 3% of bilateral supraglottoplasty developed supraglottic stenosis
 - No patients undergoing unilateral supraglottoplasty developed supraglottic stenosis
Surgical Technique
Epiglottoplasty

- In 1987, Zalzal et al described epiglottoplasty as a new procedure
- 10 patients
- Using a laryngoscope, excised redundant mucosa from:
 - Lateral edges of epiglottis
 - Aryepiglottic folds
 - Arytenoids
Epiglottoplasty

• “All patients had complete relief”
 – One patient had to undergo repeat excision

• Indications for operating
 – Severe stridor with:
 • Failure to thrive
 • Cor pulmonale
 • Feeding difficulties
 • Apnea
 – Inability to view vocal cords due to laryngeal inlet collapse
CO2 Laser Supraglottoplasty

- In 2001, Senders et al evaluated use of CO2 laser in supraglottoplasty and role of associated anomalies on outcome
- Retrospective chart review of 23 patients
- Results
 - Patients without associated anomalies
 - 78% with immediate resolved symptoms
 - 100% with symptom resolution in a week
 - Unfavorable immediate results and long-term surgical failure all had associated anomalies
 - Arnold-Chiari
 - Cerebral Palsy
 - CHARGE Association
 - Rieger syndrome
Endoscopic Aryepiglottoplasty

- In 2001, Toynton et al evaluated the affect of endoscopic aryepiglottoplasty on severe laryngomalacia
- Retrospective review of 100 patients
- Surgical criteria
 - Oxygen saturation below 92%
 - Failure to thrive
Endoscopic Aryepiglottoplasty

• Toynton Results
 – 94% of patients had improvement of stridor within one month
 • 55% of these patients were completely without stridor
 – Patients with slower progression of improvement were found to have serious neurological condition
 – 72% of patients with preoperative feeding difficulties improved their feeding
Aryepiglottic Fold Division

- In 2001, Loke et al examined effect of simple division of aryepiglottic fold
- Retrospective review of 32 cases
- Results
 - 69% showed complete resolution of symptoms
 - 22% showed partial resolution of symptoms without further surgical intervention required
 - 6% required additional procedure
 - 1 patient required tracheotomy
Epiglottopexy

- In 2002, Werner et al addressed isolated posterior displacement of epiglottis
- 6 patients underwent epiglottopexy
 - 4 solely epiglottopexy
 - 2 with epiglottopexy and transection of aryepiglottic folds
- All patients with significant airway improvement and no effect on deglutition
Epiglottopexy Treatment Algorithm

- supraglottoplasty
 - inspiratory collapse of hyperplastic mucosa
- incision of the aryepiglottic folds
 - shortened aryepiglottic folds
- main causes of laryngomalacia
 - posterior displacement of the epiglottis
 - epiglottopexy
Epiglottopexy
Microdebrider Supraglottoplasty

- In 2005, Zalzal et al presented new technique to supraglottoplasty by making use of the microdebrider
- Case series of five patients
- Technique
 - Dividing the aryepiglottic fold with microlaryngeal scissors
 - Aryepiglottic folds are resected with microdebrider
 - anteriorly to the lateral edge of the epiglottis
 - posteriorly to the arytenoids cartilage
 - Redundant supraarytenoid mucosa removed with microdebrider
- All patients with post-op resolution of stridor and no complications
Pre-operative Laryngomalacia
Division of Aryepiglottic Fold
Post-operative Laryngomalacia
Pre and Post-operative Laryngomalacia
Complications and Failures
Failures and Complications

• In 2003, failures and complications in supraglottoplasty were analyzed by Denoyelle et al.

• Retrospective review of 136 patients
 – 102 with isolated laryngomalacia
 – 34 with additional congenital anomalies
 • Pierre Robin
 • Psychomotor retardation
 • CHARGE Association
 • Down syndrome
Failures and Complications

• **Outcome measures**
 – Persistence of dyspnea
 – Sleep apnea
 – Failure to thrive
 – Need for additional treatment
 – Presence of granuloma, edema, or web
 – Supraglottic stenosis
Supraglottic Stenosis
Failures and Complications

• Results
 – Failure or only partial improvement of symptoms was only seen in patients with additional congenital anomalies (8.8%)
 – need for revision surgery was 4.4%
 – minor complications (granuloma, edema or web) occurred in 3.7%
 – supraglottic stenosis occurred in 4.4%
Recommendations
Recommendations

• Conservative management with close follow-up
• Use technique that surgeon feels most comfortable with for surgical intervention
• Reasonable to treat unilaterally
• Cotton RT. Practical Pediatric Otolaryngology. 1999: 497-501.
• Iglauer S. Epiglottidectomy for the relief of congenital laryngeal stridor, with report of a case. Laryngoscope. 1922; 32: 56-59.